Thursday, May 1, 2014

How Resistance Temperature Device Works

By Tracie Knight


Measurement of temperatures in different environments depends on prevailing circumstances. The use of resistance temperature device or RTD is informed by the principle that temperature affects the resistance of an electric conductor. A known element is used in the correlation to calibrate and standardize the RTDs.

The most common metal for this purpose is platinum. It is widely used because it displays consistency over a wide range. The level of accuracy is incredible which makes it reliable for industrial processes. It has an incredible sensitivity that makes it preferable over the others.

Industrial processes are very specific when dealing with heat. This raises the need for high sensitivity and faster response. The metals used in this case are carefully selected to ensure that their response time is minimized. It gives a signal to control and monitoring units to take action before the outcome is compromised.

Some of the areas where this technology is required include in the automotive industry, appliances, HVAC and control units. It also works in the test and measuring units of production plants. Instruments used in testing and measurement require similar levels of accuracy and consistency. This is what elements such as platinum, nickel and copper provide.

The best element for use as a conductor must display consistency over a wide temperature range. Sensitivity to slight increment or reduction in the amount of heat is also important. The sensitivity of such processes as extraction means that the highest possible accuracy degree must be achieved. This prevents scenarios where the outcomes are compromised.

Exposure to heat causes varying reactions which is considered a limitation when using RTDs. Temperatures beyond 660 degrees Celsius have been known to damage the conductor or cause it to misbehave. Too much heat causes impurities to contaminate the conductor. They come from the sheath and affect measurement given.

Impurities found at boundaries and changing temperatures have a significant effect on the behavior of conductors in RTDs. This has been clearly noted when it is below 270 degrees or 3 Kelvin. The elements used have very few phonons which explains their behavior. This affects their sensitivity to slight changes in temperature.

The challenges posed by the use of RTDs include accuracy when converting the readings. The relationship between resistance and temperature is a delicate one and easily affected by other conditions. Sensitivity changes depending on heat. This is likely to give erroneous results.

Exposing conductors to continuous heat is likely to alter their properties. This leads to inconsistencies during a thermal cycle. This is defined as hysteresis and threatens to push RTDs out of some operations. It also affects their sensitivity thus limiting their use. The conductors, however, respond well to lower temperatures.

Interference from the sheath and impurities on the device cause loss of heat. This affects the accuracy of such devices. There is a possibility of current flowing through the conductor from other sources. Other factors that affect accuracy include the number of wires used as conductors. The response time for these devices is not satisfactory in some instances.




About the Author:



No comments:

Post a Comment